
N92"14214

Video Data Compression Using Artificial Neural Network

Differential Vector Quantization

Ashok K. Krishnamurthy Steven B. Bibyk Stanley C. Ahalt

Department of Electrical Engineering

The Ohio State University

Columbus, Ohio 43210

Abstract

All artificial neural network vector quantizer is devel-

oped for use in data compression applications such
as Digital Video. Differential Vector Quantization is

used to preserve edge features, and a new adaptive

algorithm, known as Frequency-Sensitive Competitive

Learning, is used to develop the vector quantizer code-

book. To develop real time performance, a custom

VI,SI ASIC is being developed to realize the associa-
t.ive memory flmctions needed in the vector quanti-

zation algorithm. By using vector quantization, the

need for Ilnffman coding can be eliminated, result-

mg in superior performance against channel bit errors

than methods that use variable length codes.

1 Introduction

Effective data compression algorithms are needed to
reduce transmission bandwidth and storage space. In

particular, there is a great deal of interest in the low

bit rate coding of images. In this paper, we discuss

the compression of digital video image dala, which
has become a central concern as HDTV standards be-

gin to develop. One compression technique, Vector

Quantization (VQ) [1, 2], has emerged as a power-

ful technique that can provide large reductions in bit

rate while preserving essential signal characteristics.

In this paper we show that error-insensitive VQ en-

coders can be constructed by employing enlropy based
VQ codebooks.

The purpose of this paper is to describe the use
and ilnplementation of an Artificial Neural Network

(A N N) Vector Quantizer. More specifically, we discuss

the design of a real-time, edge-preserving Differential

\:ector Quantizer (DVQ) architecture. We discuss the

use of an ANN algorithm to design VQ eodebooks, and

we anticipate that the use of the same ANN algorithm

can be employed in adaptive DVQ coders. Tile partic-

ular ANN algorithm we use is called Frequency Sen-

sitive Competitive Learning (FSCL). This algorithm

has been described in depth in previous publications

[3, 4], so only a brief presentation is given here.

A locally-optimal vector quantization algorithm,

proposed by Linde, Buzo, and Gray (LBG) [5], has

been extensively employed in encoding both speech

and images. However, studies have shown that, in

many cases, the computational complexity of this al-
gorithm restricts its use in real-time applications [1, 6].

Tile use of ANNs to perform vector quantization has

been proposed to overcome these limitations.

The use of ANNs for vector quantization has a num-

ber of significant advantages. First, ANNs are highly-

parallel architectures and thus offer the potential for

real-time VQ. Second, the large body of training tech-

niques for ANNs can be adapted to yield new, and

possibly better, algorithms for VQ codebook design.
Third, in contrast to the batch training mode of al-

gorithms based on the I,I_G algorithm [7], most ANN
training algorithms are adaptive; thus, ANN based VQ

design algorithms can be used to build adaplive vec-

tor quantizers [8]. This is crucial in applications where
the source statistics are chauging over time.

This paper is organized as follows. First, we briefly

describe basic Vector Quantization techniques and dis-
cuss ANN VQ techniques. We then describe the FSCL

algorithm and show how the FSCL algorithm attempts
to build a maximum-entropy codebook. Then, in Sec-

tion 3, we describe how a VQ encoder can be viewed

as an Associative Memory (AM) and discuss issues

related to the design and implementation of an AM.
This is followed by a short discussion on the Differen-

tim Vector Quantization architecture which is used to

minimize edge distortion. We then present our exper-
imental results in Section 5 where a FSCL codebook

is used in a DVQ architecture to compress digital im-

ages.

95 PRECEDING PAGE _,LA?,_K NOT FILMED

2 Vector Quantization and the FSCL
Artificial Neural Network

2.1 Basic Vector Quantization Concepts

Vector quantization capitalizes on the underlying

structure of the data being quantized. The space of
the vcctors to be quantized is divided into a number of

regions of arbitrary volmne and a reproduction vector
is calculated for each region. Given any data vector

to be quantized, the region in which it lies is deter-

Jnined and the data vector is then represented by the
reproduction vector for that region. Instead of trans-

mitting or storing a given data vector, a symbol which

indicates the appropriate reproduction vector is used.

This call result in considerable savings in transmission

bandwidth, albeit at the expense of some distortion.

More formally, vector quantization maps arbitrary

data vectors to a binary representation or symbol.

Thus, the VQ mapping is from a k-dimensional vector

space to a finite set of symbols, M. Associated with
each symbol m E {M} is a reproduction vector xm.

The encoding of the data vector x to the symbol m is

a mappil_g,

VQ :× = (_l,-2,' "', *k) --" '_

where Tn E {M} and the set M has size M. Assuming

a noiseless transmission or storage channel, m is de-

coded as R,_, the reproduction vector associated with

the symbol m. The collection of all possible repro-
duction vectors is called the reproduction alphabet or

more commonly the codebook. Since there are M el-

elnents in the set M, there are M possible entries in

the codebook. Once the codebook is constructed and,

if necessary, transmitted to the receiver, the encoded

symbol m acts as an index into the codebook. Thus,

the rate, R, of the quantizer is R = log 2 M bits per in-

put vector. Since each input vector has k components,

the number of bits required to encode each input vec-
tor component is R/k.

Since each data vector must be ultimately repre-
sented as one of the codebook entries, the composition

of t.he codebook determines the overall performance of

the system. A number of different performance crite-

ria can be used to determine an optimal codebook.

Fo," example, in image transmission applications the

usual objective is to minimize the overall distortion in

the signal due to VQ. Thus the design criterion used to

design an optimal codebook is the minimization of the

average distortion in encoding vectors using the code-

book. Another possible criterion is to maximize the
entropy of the codebook, i.e., to ensure that each of

the codewords is used equally frequently in encoding

the data. This is a very useful criterion in develop-

ing ANN training algorithms for VQ design because

maximum entropy codebooks can be employed with-
out the use of Iluffman codes, thus reducing encoder

sensitivity to channel errors. Finally, an alternative
criterion is to use a distortion measure that incorpo-

rates expected responses of the human visual system
to differences in intensity values and motion.

Given a performance criterion, the VQ codebook

design process involves the determination of a code-

book that is optimal with respect to this criterion.

This normally requires knowledge of the probability
distribution of the input data. Typically, however,

this distribution is not known, and the codebook is

constructed through a process called training. During

training, a set of data vectors that is representative of

the data that will be encountered in practice is used

to determine an optimal codebook.

During the training process, a distortion measure,

d(x,_) is typically used to determine which data
points are to be considered as being in the same re-

gion. The distortion measure can be viewed as the cost

of representing x as _. By determining which training
data vectors lie in the same region, the k-dimensional

data space is partitioned into cells. All of the input
vectors that fall into a particular cell are mapped to a

single, common reproduction vector.

2.2 Motivations for the use of ANN VQs

Unfortunately, the VQ training and encoding pro-

cesses are computationally expensive. Moreover, most

of the algorithms currently used for VQ design are

batch mode algorithms [5], and need access the entire

training data set during the training process. Using

ANN adaptive techniques, it is possible to realize an

adaptive VQ coder in which codewords are modified

based on the arrival of each new training vector.

2.3 The FSCL Algorithm

The Frequency - Sensitive Competitive Learning
(FSCL) algorithm is an unsupervised ANN consist-

ing of two layers. The input layer nodes transmit the

input vector elements to each of the nodes in the out-

put layer. In the output layer, known as the winner-

take-all layer, each node receives inputs from all of
the input nodes. The weighted interconnections be-

tween these two layers are considered the exemplar, or

weight vectors and are used for selecting the winner
node. The winning node is selected on the basis of

a modified distortion measure for each of the output

layer nodes. The FSCL codebook design algorithm

used in a training phase is discussed below.

96

Oneof themotivationsfor theFrequency-Sensitive
CompetitiveLearning(FSCL)networkisto overcome
thelimitationsofsimplecompetitivelearningnetwork
whileretainingits computationaladvantages.Oneof
themainproblemswithCLnetworksis that someof
theneuralunitsmaybeunder-utilized,thelearning
algorithmfortheFSCLnetworkkeepsacountofhow
frequently each neural unit is the winner. This in-
formation is used to ensure that, during the training

process, all neural units are modified an approximately

equal number of times. This yields a codebook that,

on average, utilizes all of codewords equally. Conse-
quently, the use of variable-length Huffman codes is

unnecessary because no additional compression will be

achieved through their use.

To solve the under-utilization problem and obtain

an equiprobable codebook, the FSCL Algorithm uses
a fairness function, .T(ui), which is a function of the

local update counter, ui, and is chosen to ensure the
utilization of all the nodes in the winner-take-all layer.

The motivation and use of fairness function has been

discussed in previous papers [3, 4].

Finally, if the codewords are indexed or labeled such
that codewords which are close in Hamming distance

are also close in the chosen distortion criteria (e.g.,

absolute distance) then the resulting encoding archi-
tecture will be relatively insensitive to transmission er-
rors. This is because random bit errors in the channel

will result in reproduction vectors which are "close"
in the distortion criteria chosen by the codebook de-

signer.

2.3.1 The FSCL Training Phase

In the trainin 9 phase, the exemplar vectors in the

winner-take-all layer are adjusted adaptively to statis-

tically reflect the distribution of the training vectors.

A training vector is applied to the input layer and

compared to all of the exemplar vectors in the winner-
take-all layer. Upon the completion of the compar-

isons, one node in the winner-take-all layer is selected
to be the winner and the rest of the nodes are inhib-

ited. The selection of the winner node depends on the

product of the fairness function, _'(ui), and the dis-
tortion measure. The distortion measure of each input

training vector is calculated with respect to the exem-

plar vector. Common approaches for measuring the
distortion of the input and exemplar vectors are dot

product, Euclidean distance, and absolute distance.

The exemplar vector of the winning node is ad-

justed, by an amount specified by the learning rate,
so as to more closely represent the input vector. Fi-

nally, the winner node increments its update-counter,

ui, and then the next training vector is presented to
the network. Each node in the winner-take-all layer

has a private update-counter, and the counters are
used to influence the selection of the winner nodes.

As a result, infrequently used exemplar vectors are

adjusted, even if they had a larger distortion measure

than other exemplar vectors [9].

When the learning phase is completed, all of the

weight vectors in the winner-take-all layer are adapted,
and the FSCL-derived codebook can be used in the

encoder. As previously noted, the use of the modified
distortion measure insures that the codewords are up-

dated approximately the same number of times, thus

maximizing the entropy of the codebook.

2.3.2 The Encoding and Decoding Phase

After the codebook has been constructed, input data

vectors are coded by comparing each data vector with
each of the codewords and then transmitting (or stor-

ing) the index of the (winning) codeword which yields
the minimum distortion. Finding the minimum dis-
tortion codeword is a time-consuming task, but this

operation is inherently parallel. The parallel hard-
ware we have developed for the encoding is discussed

in Section 3, and uses winner-take-all circuits in an
Associative Memory encoder. Note that the winner-

take-all circuits are used during training and encoding.

However, only during training does adaptation of the
codewords occur.

To decode the datum the receiver uses the received

index to access a copy of the codebook to determine

the reproduction vector used to represent the original
data. This is a simple look-up process, and can be

done without special hardware support in conventional

RAM.

3 Vector Quantization as Associative

Memory

VQ can be thought of as the process taking an input
vector and matching it to the closest vector out of
a set of vectors. Once the closest match is found, the

index of the match is transmitted to the receiver. This

process can also be viewed as an Associative Memory

(AM), where the index is associated with a particular
codeword.

As an example of an associative memory which uses

Hamming distance and has very fast matching capa-

bilities, consider the following design. The AM cell,

shown in Figure 1, is a simple variant of the standard
static RAM cell.

97

' i
__I--'1 7-1__

M7 l M8

[-_ _M9

]i
M1

_I'--1

M5 iM 3

BIT BIT

WORD

MATCH

Figure 1: An Associative Memory cell. The transistors
M7, M8 and M9 are the only additions to a standard
static RAM. Their function is to draw the MATCH
line low when the value on the BIT and n--TYlines match

the value stored in the static RAM core.

When in a matching mode, i.e. any time the WORD

line is not asserted, if the value on the BIT line matches

that stored by transistors M1 and M3, the transis-
tor M7 becomes active and M9 is turned on and the

XIATcn line is drawn down. Similarly, if the _ line

matches the value stored in transistors M2 and M4,

the transistor M8 becomes active and again M9 turns
on.

Tile AM cells are arranged ill all array such that the
words to be matched all share tile same MATCH line,

as shown in Figure 2.

I AM

Cells

Figure 2: An array of associative memory cells, with

their corresponding closest match circuitry. The cir-
cuitry which determines the closest match is a winner-

take-all network which grows linearly with the number
of words to match.

At the top of each column of AM cells is a current

supply, which drives the MATCH line. In match mode
as the value to be matched is shown to the column

via the BIT and _ lines, the AM cells begin to sink
current if the value stored in the AM matches that

presented on the BIT and _ lines. The circuitry at
the bottom then determines which current coming in

is the highest. The only IOUT with any output current

is the lOUT for which the corresponding MATCH line

that is the largest. This 1OUT is then used to gate the

value of the given AM column to the output buffers.

4 Differential Vector Quantization

Differential Pulse Code Modulation (DPCM) can be

used to perform quantization of image data in a

CODEC (COder-DECoder) architecture. One exam-
pie can be found in [10] which is based on DPCM

but also utilizes a nonuniform quantizer and multilevel

Huffman coding to reduce the data rate substantially
below that achievable with straight DPCM. As a re-

sult of variable length coding, the compression ratio is

different for different images depending on the statis-

tics of that particular image. Furthermore, because of
the different codeword lengths it is very difficult to de-

tect and compensate for transmission errors even if an

end-of-line reset is used to re-sychronize the encoder
and the decoder.

Current

ENCODER

CHANNEL
..

Reoonstructed
_e

,i s,xx Dzrr _uDEx

DECODER

Figure 3: Block Diagram for Differential Vector Quan-
tizer

Differential Vector Quantization (DVQ) (see Fig-

ure 3) incorporates the desirable qualities of both

Differential Pulse Code Modulation (DPCM) and

98

VQ [11]. In DVQ, instead of scalar quantizing the

scalar difference values (as in DPCM), vectors of differ-

ence values (difference tiles) are vector quantized and

their codeword indices transmitted. At the receiver,

the indices are used to look up the reconstruction dif-

ference vector which is then added to the predicted

difference vector.

Because the VQ coder uses the FSCL derived code-

books, over a large sample of images the codewords are

utilized relatively equally. Consequently, fixed length

codes are used and the codec does not need to use

synchronizing codes. Furthermore, as discussed ear-

lier, by arranging the codewords so that codewords

which are Hamming-close are also distortion-close we

can achieve a significant level of error insensitivity, as

the results in Section 5 clearly show.

5 Results

Table 1 shows the MSE obtained when DVQ codec

using a FSCL codebook was used to compress eight

images. For comparison, the MSE for a version of a

DPCM codec, as described in [10], is also given. As

can be seen, the DPCM codec yields MSEs which are

lower than those of the DVQ codec. However, as can

be seen in Figures 4 and 5 the images are virtually

indistiguishable (these images are indistinguishable at

full resolution, as well). Furthermore, as shown in Fig-

ure 6, the DVQ codec is significantly more robust to

channel errors. In the left picture of Figure 6 line

resynchronization was used in an attempt to mini-

mize errors to one line of the image. Note that, even

with resynchronization, the method results in trun-

cated lines. Furthermore, when errors occur in the

synchronizing codeword, lines are missed entirely.

6 Conclusions

We have presented an ANN based DVQ codec which

is well suited for use in data compression applications

such as Digital Video. There are three novel aspects

of this work. First, Differential Vector Quantization is

used to preserve edge features. Second, a new adaptive

algorithm, known as Frequency-Sensitive Competitive

Learning, is used to develop a vector quantizer code-

book that eliminates the need for Huffman coding.

Finally, in order to realize real time performance, a

custom VLSI ASIC is being constructed to perform

the associative memory functions needed in the vec-

tor' quantization algorithm. The resulting codec ex-

hibits greater compression and superior performance

against channel bit errors than methods that use vari-

able length codes.

Acknowledgments

Support for this research was provided by grants from

the NASA-Lewis Research Center. We would also

like to express our gratitude to Ken Adkins, Matt

Carbonara, Surajit Chakravarti, Metin Demirci, Jim

Fowler, and Rich Kaul.

7

[1]

[2]

References

R. M. Gray, "Vector Quantization," IEEE ASSP

Magazine, vol. 1, pp. 4-29, April 1984.

J. Makhoul, S. Roucos, and H. Gish, "Vector Quan-

tization in Speech Coding," Proceedings of the IEEE,

vol. 73, pp. 1551-1588, November 1985.

[3] S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D. E.

Melton, "Competitive Learning Algorithms for Vector

Quantization," Neural Networks, vol. 3, pp. 277-290,

1990.

[4] A. K. Krishnamurthy, S. C. Ahalt, D. Melton, and

P. Chen, "Neural Networks for Vector Quantization of

Speech and Images," IEEE Journal on Selected Areas

in Communications, vol. 8, no. 8, 1990.

[5] Y. Linde, A. Buzo, and R. M. Gray, "An Algorithm

for Vector Quantizer Design," IEEE Transactions on

Communications, vol. COM-28, pp. 84-95, January

1980.

[6] A. Buzo, A. H. Gray, Jr., R. M. Gray, and J. D.

Markel, "Speech Coding based upon Vector Quantiza-

tion," IEEE Transactions on Acoustics, Speech, and

Signal Processing, vol. ASSP-28, pp. 562-574, Octo-
ber 1980.

[7] S. P. Luttrell, "Derivation of a Class of Training Al-

gorithms," IEEE Transactions on Neural Networks,

vol. 1, pp. 229-232, June 1990.

[8] T.-C. Lee and A. M. Peterson, "Adaptive Vector

Quantization Using A Self-Development Neural Net-

work," IEEE Journal on Selected Areas in Communi-

cations, vol. 8, no. 8, 1990.

[9] P. Chen, "The Neural Shell: A Neural Networks Sim-

ulator," Master's thesis, The Ohio State University,
March 1989.

[10] M. J. Shalkhauser and W. A. Whyte, Jr., "Digital

CODEC for Real-Time Processing of Broadcast Qual-

ity Video Signals at 1.8 Bits/Pixel," Technical Report

NASA TM-102325, National Aeronautics and Space

Administration, Lewis Research Center, Cleveland,

1989. Prepared for Global Telecommunications Con-

ference sponsored by IEEE, Dallas, Texas, Nov 27-30,

1989.

[11] C. W. Rutledge, "Vector DPCM: Vector Predictive

Coding of Color Images," in Proceedings of the JEEE

Global Telecommunications Conference, pp. 1158-

1164, September 1986.

99

Table 1: MSE of NASA Codec and FSCL Differential Vector Quantization Algorithms

Picture Pixel (BPP) _ No Errors _].........._M_: BER : 1/1000 "_
1-_ dvq 256 _c i]'28 _v-vq 256]] codec] -d-v-'qqT2-8- dvq 256

bird 1.75

everest 1.75

fruityt 1.75

hall 1.75

kittyt 1.75

lenna 1.75

mandril 1.75

planet 1.75

scenet 1.75

sft 1.75

2.00 20.2

2.00 16.8

2.00 16.5

2.00 17.8

2.00 14.0

2.00 11.4

2.00 89.0

2.00 13.9

2.00 22.6

2.00 57.1

14.5 70.2

12.6 44.1

11.9 67.1

12.7 71.1

10.1 65.7

8.3 47.7

66.4 305.7

10.0 56.6

16.3 75.7

41.9 159.9

71.6

34.3

71.0

63.0

47.9

34.6

201.1

61.6

75.7

139.7

tThese images were used in training the vector quantizer.

Error MSE's averaged over 3 trials.

Figure 4: Original image (left) and reconstructed image using the NASA codec algorithm (right)

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS

OF POOR QUALITY

100

Figure 5: Reconstructed image using differential vector quantization, FSCL with 128 codewords (left) and 256

codewords (right)

i ::::::_ ::: ::::,

.##'.

•i. .':_/

Figure 6: Reconstructed image with a noisy transmission channel (1 error per 1000 bits), NASA codec algorithm

(left,) and differential vector quantization using FSCL with 256 codewords (right)

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

101

ORIGINAL PAOE IS
OF POOR QUALITY

